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Erythromycin A has been converted into a 3,6-bridged ether via a C-3 chloroformate by nucleophilic addi-
tion of the hydroxyl function at C-6. Further transformations afforded N-demethyl-3-O-descladinosylery-
thromycin A 20,30-carbamate-11,12-carbonate-3,6-ether in 59% overall yield over four reaction steps from
(9E)-erythromycin A 9-(O-allyloxime).

� 2008 Elsevier Ltd. All rights reserved.
The antibacterial agent erythromycin A is widely used in treat-
ment of upper and lower respiratory tract infections and in genital
infections.1–3 The drug suffers from some major clinical disadvan-
tages such as poor bioavailability and frequently causes gastroin-
testinal side effects. These effects have been attributed to the
chemical instability of erythromycin A in acidic environments.
Early modifications of erythromycin A have provided chemically
more stable semi-synthetic macrolides such as clarithromycin
and azithromycin. We have initiated a study where the 30-dimeth-
ylamino group in the desosamine sugar is transformed into a
20,30-cyclic carbamate in an effort to improve the physical and
antibacterial properties.4,5 The work described herein has provided
a novel cyclic 3,6-ether bridged 20,30-cyclic carbamate 8. The ether
bridge is expected to confer significant conformational restrictions
on the parent molecule.

Erythromycin A was the starting material for the synthetic
work. The 9-keto function was initially protected as an O-allyl-
oxime, structure 1 in Scheme 1.6,7 Without oxo group protection,
intramolecular cyclisation reactions between the 6-OH group and
the 9-oxo group are favoured. Mild acid conditions were used to
remove the cladinose sugar resulting in generation of the 3-hydro-
xy derivative 2 in 85% yield. A subsequent treatment with phos-
gene in the presence of pyridine as base resulted in several
functional transformations, and a tri-cyclisation scenario led to a
novel 3,6-oxa-bridged structure 4.8 The vicinal 11,12-dihydroxy
groups were linked by carbonate formation, whereas the 20-hydro-
xy and the 30-dimethylamino groups were transformed into a
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mono-demethylated cyclic carbamate unit. The 3-hydroxy group
was expected to react with carbonyl chloride formation and there-
by furnish structure 3. Addition of allyl alcohol to the initial reac-
tion product, however, failed to provide an allyl carbonate
function at C-3. IR analysis of the isolated product showed no
hydroxyl group absorption. Using 2D NMR techniques, the product
was identified as the cyclic 3,6-ether 4 which was obtained in 91%
yield as a single diastereomer with the configuration at C-3 as
tentatively assigned. Presumably the 3-chloroformate 3 is an inter-
mediate structure. The formation of the cyclic 3,6-ether in 4 is
rationalised as a nucleophilic attack from the 6-OH group onto
C-3 with expulsion of the chloroformate functionality as carbon
dioxide and a chloride. The direct displacement requires inversion
of the configuration at C-3, with formation of a single C-3 epimer.
When the 6-OH group is prevented from participating in the reac-
tion by being O-methylated as in 3-O-descladinosylclarithromycin
(5), the reaction with phosgene and pyridine in dichloromethane,
followed by a reaction with allyl alcohol, yielded the C-3 allyl
carbonate 6 (Scheme 2).4 This finding supports a reaction path
proceeding by direct nucleophilic attack of the C-6 hydroxyl group
at C-3 during the formation of the cyclic 3,6-ether 4.

In erythromycin A chemistry, the cyclic 3,6-ether structure unit
has previously been reported mainly as a result of unexpected
reactions. Thus, treatment of erythromycin 6-hydroxy-3-mesy-
lates with lithium chloride or pyridine led to the formation of
3,6-ether structures.9 More recently, it has been reported that
6-hydroxy-3-mesylate azalides underwent cyclisation with the
formation of 3,6-ethers when treated with sodium hydride.10 The
C-6 methoxy analogues gave anhydrolides under the same
conditions when base-mediated elimination of the mesyl group
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Scheme 1. Reagents and conditions for cyclic ether formation: (i) HCl, EtOH/H2O (2:1), rt, 100 min; (ii) (a) COCl2, pyridine, CH2Cl2, rt, 22 h, (b) MeOH, 30 min.

Scheme 2. Reagents and conditions: (i) COCl2, pyridine, CH2Cl2, rt, 5 h; (ii)
CH2@CHCH2OH, rt, 30 min.
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occurred. Displacement of the cladinose sugar with formation of a
3,6-ether derivative has also been reported.11 However, no reac-
tion was observed when the corresponding 6-O-methyl analogue
was treated under the same conditions.11 It was suggested that
cyclic ether formation was caused by a direct nucleophilic dis-
placement by the 6-hydroxyl group. In ring azalides, however, a
two-step mechanism with elimination to the conjugated ester
and a subsequent addition of the C-6 hydroxy group was proposed
for the cyclic 3,6-ether formation.12

The ether oxime 4 was converted into its 9-oxo derivative
(Scheme 3). The free oxime 7 was obtained in 87% yield using tri-
ethylammonium formate as the reducing agent under palladium
catalysis.13 Deoximation by treatment with sodium hydrogen sul-
fite, which is the most frequently reported deoximation agent for
Scheme 3. Reagents and conditions for deprotection: (i) Pd(OAc)2, PPh3, HC
macrolide oximes, resulted in a complex product mixture. Presum-
ably, interactions between the cyclic carbonate and the nucleo-
philic reagent caused side reactions. Oxidative deoximation with
Dess–Martin periodinane (DMP) reagent,14 however, proved to be
excellent. Slow addition of DMP to a solution of the oxime 7 in
wet dichloromethane afforded almost pure ketone 8 in high
yield.15

The antibacterial activities of compounds 4, 7 and 8 were mea-
sured as the minimum inhibitory concentrations (MIC) of bacterial
growth against Staphylococcus aureus ATCC 25923 and Escherichia
coli ATCC 25922.16 The compounds were inactive within the limits
of the analysis. Previous reports from our group on the 20,30-carba-
mate derivatives of erythromycin, however, have shown that this
structural unit lowers the antibacterial activity of the macrolides
due to loss of the basic dimethylamino function.4,5 Hence, the bio-
effect of the 3,6-ether element remains unknown.

In conclusion, we have shown that a 3,6-bridged ether structure
is formed when a 3-O-descladinosylerythromycin A derivative,
with a free hydroxy group at C-6, is treated with phosgene. The
cyclisation is rationalised as an intramolecular nucleophilic dis-
placement of the intermediate chlorocarbonate of the 3-hydroxyl
group. When the 6-hydroxyl group is blocked as a methyl ether
as in clarithromycin, cyclisation does not take place.
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